7CCSMCIS Cryptography and Information Security
Rail fence cipher: exercises
Decrypt the following ciphertext that was generated using a rail fence cipher with 2 rails.
TEETN WRTRA HNWSE EOEBA TUSHR ISHBS KONOO MCIEA DVLPD YRHRC EBU
- Count characters and divide by 2 to get split point. 53/2 = 26.5, so split at H.
T E E T N W R T R A H N W S E E O E B A T U S H R I S
H B S K O N O O M C I E A D V L P D Y R H R C E B U
- Gives:
THE BEST KNOWN ROTOR MACHINE WAS DEVELOPED BY ARTHUR SCHERIBIUS
Use a rail fence cipher with 3 rails to encipher this message:
alan turing the enigma
.
A N R G E I A
L T I T E G
A U N H N M
Gives:ANRGEIALTITEGAUNHNM
Rotating Grille
A more complex transposition cipher: exercise
As in the slides of the lecture, write the plaintext message:
The enigma cipher machine had the confidence of German forces who depended on its security
in a rectangle, row by row, and read the message off column by column but permute the order of the columns using the key3571426
3 | 5 | 7 | 1 | 4 | 2 | 6 |
---|---|---|---|---|---|---|
t | h | e | e | n | i | g |
m | a | c | i | p | h | e |
r | m | a | c | h | i | n |
e | h | a | d | t | h | e |
c | o | n | f | i | d | e |
n | c | e | o | f | g | e |
r | m | a | n | f | o | r |
c | e | s | w | h | o | d |
e | p | e | n | d | e | d |
o | n | i | t | s | s | e |
c | u | r | i | t | y | x |
Columns:
3. tmrecnrceoc
5. hamhocmepnu
7. ecaaneaseir
1. eicdfonwnti
4. nphtiffhdst
2. ihihdgooesy
6. geneeerddex
1. eicdfonwnti
2. ihihdgooesy
3. tmrecnrceoc
4. nphtiffhdst
5. hamhocmepnu
6. geneeerddex
7. ecaaneaseir
Encrypted with 3571426
:
eicdfonwntiihihdgooesytmrecnrceocnphtiffhdsthamhocmepnugeneeerddexecaaneaseir
Second transposition with the same key
3 | 5 | 7 | 1 | 4 | 2 | 6 |
---|---|---|---|---|---|---|
e | i | c | d | f | o | n |
w | n | t | i | i | h | i |
h | d | g | o | o | e | s |
y | t | m | r | e | c | n |
r | c | e | o | c | n | p |
h | t | i | f | f | h | d |
s | t | h | a | m | h | o |
c | m | e | p | n | u | g |
e | n | e | e | e | r | d |
d | e | x | e | c | a | a |
n | e | a | s | e | i | r |
Columns:
3. ewhyrhscedn
5. indtcttmnee
7. ctgmeiheexa
1. diorofapees
4. fioecfmnece
2. ohecnhhurai
6. nisnpdogdar
1. diorofapees
2. ohecnhhurai
3. ewhyrhscedn
4. fioecfmnece
5. indtcttmnee
6. nisnpdogdar
7. ctgmeiheexa
Encrypted with 3571426
:
diorofapeesohecnhhuraiewhyrhscednfioecfmneceindtcttmneenisnpdogdarctgmeiheexa
The ADFGVX
cipher: exercise
Consider again the arrangement:
A | D | F | G | V | X | |
---|---|---|---|---|---|---|
A | 8 | P | 3 | D | 1 | N |
D | L | T | 4 | O | A | H |
F | 7 | K | B | C | 5 | Z |
G | J | U | 6 | W | G | M |
V | X | S | V | I | R | 2 |
X | 9 | E | Y | 0 | F | Q |
and encrypt:
The quick brown fox jumps over the lazy dog
first with the keyMARK
and then with the keyTURING
.
Stage 1:
T H E Q U I C K B R O W N F O X J U M P S O V E R T H E L A Z Y D O G
DD DX XD XX GD VG FG FD FF VV DG GG AX XV DG VA GA GD GX AD VD DG VF XD VV DD DX XD DA DV FX XF AG DG GV
Stage 2:
M A R K
-------
D D D X
X D X X
G D V G
F G F D
F F V V
D G G G
A X X V
D G V A
G A G D
G X A D
V D D G
V F X D
V V D D
D X X D
D A D V
F X X F
A G D G
G V
A K M R
-------
D X D D
D X X X
D G G V
G D F F
F V F V
G G D G
X V A X
G A D V
A D G G
X D G A
D G V D
F D V X
V D V D
X D D X
A V D D
X F F X
G G A D
V G
DDDGFGXGAXDFVXAXGV XXGDVGVADDGDDDVFG DXGFFDADGGVVVDDFAG DXVFVGXVGADXDXDXD
Feistel Encryption/Decryption: exercise
Show that output of decryption round 13 is equal to 32-bit swap of input to encryption round … (first identify the corresponding encryption round and then prove the equivalence).
Given:
- $LD_{16-i} \parallel RD_{16-i} = RE_i \parallel LE_i$ .
- Encryption: $LE_i = RE_{i-1}$ and $RE_i = LE_{i-1} \oplus F(RE_{i-1}, K_i)$ .
- Decryption: $LD_i = RD_{i-1}$ and $RD_i = LD_{i-1} \oplus F(RD_{i-1}, K_i)$ .
We want to show that $LD_{13} \parallel RD_{13} = RE_3 \parallel LE_3$ .
Encryption:
- $LE_3 = RE_2$
- $RE_3 = LE_2 \oplus F(RE_2, K_3)$
Decryption:
- $LD_{13} = RD_{12} = LE_4 = RE_3$
- $RD_{13} = LD_{12} \oplus F(RD_{12}, K_{13})$
- $ = RE_4 \oplus F(LE_4, K_{13})$
- $ = RE_4 \oplus F(RE_3, K_{13})$
- $ = [LE_3 \oplus F(RE_3, K_{13})] \oplus F(RE_3, K_{13})$
- $ = LE_3$
Hence: $LD_{13} \parallel RD_{13} = RE_3 \parallel LE_3$ .